Helicity Evolution at Small x

Yuri Kovchegov The Ohio State University

work with Dan Pitonyak and Matt Sievert,

arXiv:1511.06737 [hep-ph]

arXiv:1610.06197 [hep-ph]

Outline

- Goal: understanding proton spin at small x
- Observables: quark helicity TMD & PDF at small-x, g₁ structure function
- Small-x evolution for the "polarized dipole":
 - New helicity evolution evolution equations at small x
 - Large-N_C limit
 - Large N_C & N_f limit
- Solution of the large-N_C evolution equations see talk by Matt Sievert next:
 - small-x asymptotics of the g_1 structure function, quark hPDFs and helicity TMDs
 - impact on proton spin

Our Goals

Proton Spin Puzzle

• Helicity sum rule (Jaffe & Manohar form): $rac{1}{2} = S_q + L_q + S_g + L_g$

with the net quark and gluon spin

$$S_q(Q^2) = \frac{1}{2} \int_0^1 dx \, \Delta \Sigma(x, Q^2)$$
 $S_g(Q^2) = \int_0^1 dx \, \Delta G(x, Q^2)$

• The helicity parton distributions are (f = G, u, d, s, ...)

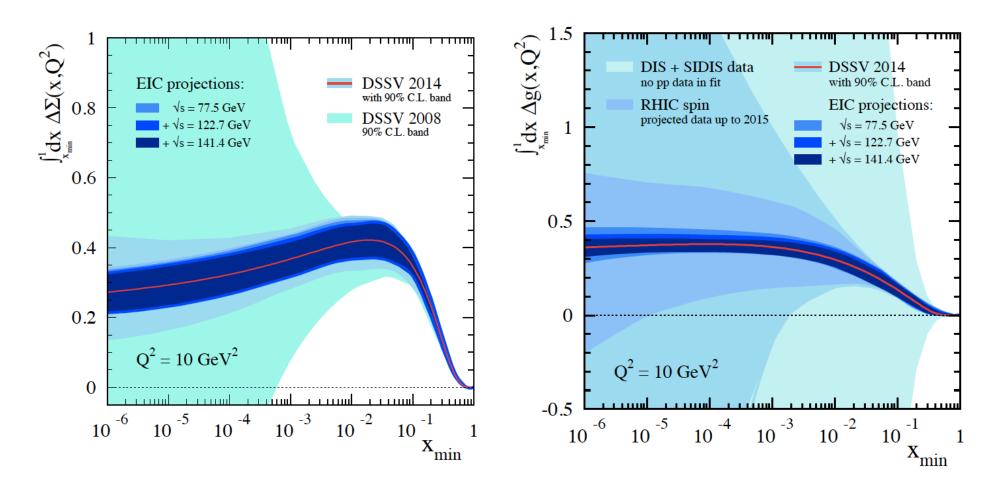
$$\Delta f(x, Q^2) \equiv f^+(x, Q^2) - f^-(x, Q^2)$$

with the net quark helicity distribution

$$\Delta \Sigma \equiv \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$

L_q and L_g are the quark and gluon orbital angular momenta

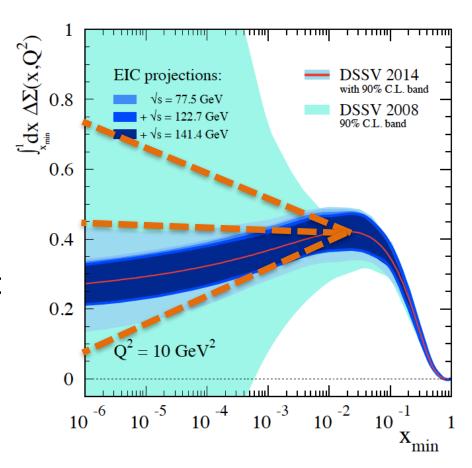
How much spin is at small x?



- E. Aschenaur et al, <u>arXiv:1509.06489</u> [hep-ph]
- Uncertainties are very large!

Spin at small x

- The goal of this project is to provide theoretical understanding of helicity PDF's at very small x.
- Our work would provide guidance for future hPDF's parametrizations.
- Strictly-speaking we only talk about quark helicity, but most likely our analysis applies to gluon hPDF's as well.



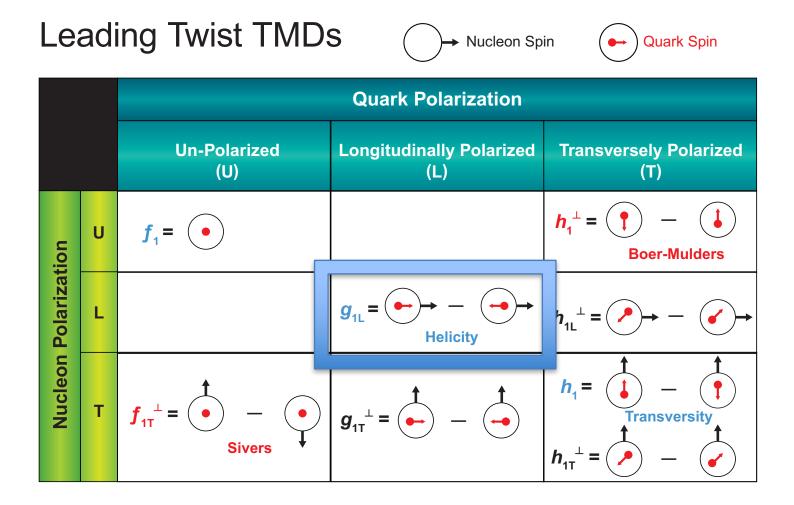
Helicity Observables

Yu.K., M. Sievert, arXiv:1505.01176 [hep-ph]

Yu.K., D. Pitonyak, M. Sievert, arXiv:1511.06737 [hep-ph]

Observables

• We want to calculate quark helicity PDF and TMD and the g_1 structure function.



Quark Helicity TMD

 We could start by simply calculating quark TMD's using the operator definition:

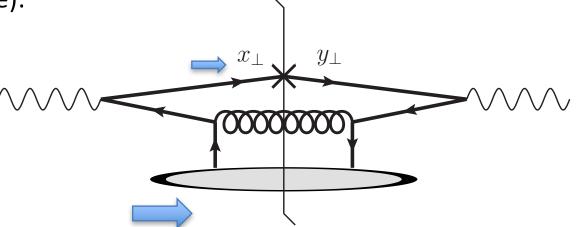
Instead we will find the TMDs from the SIDIS cross section.

SIDIS on a Spin-Dependent Target

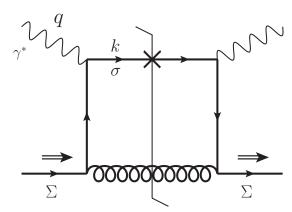
To transfer spin information between the polarized target and the produced quark we either need to exchange quarks in the t-channel, or non-eikonal gluons.

Here's an example of the quark exchange (we work in the A+=0 light cone gauge

of the projectile):

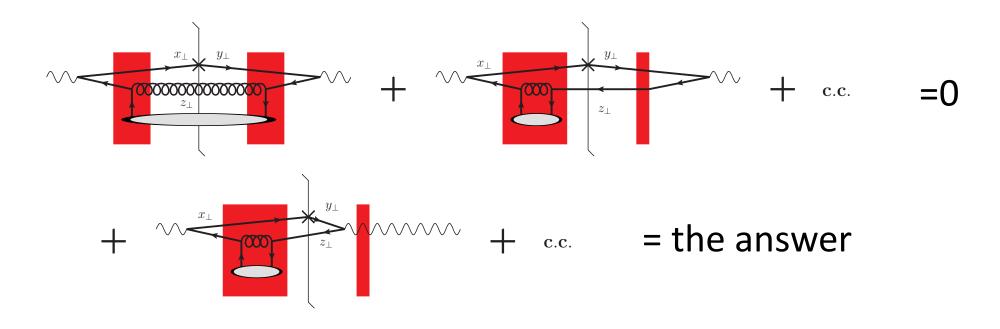


This is in addition to the standard handbag diagram which does not evolve under our small-x evolution:



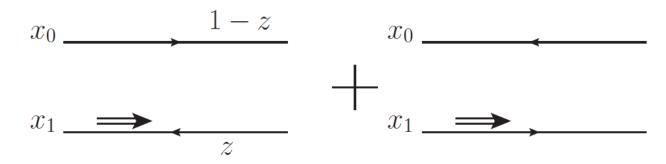
Target Spin-Dependent SIDIS

It is straightforward to include multiple shock wave interactions into the polarized SIDIS cross section:



Polarized Dipole

 All flavor singlet small-x helicity observables depend on one object, "polarized dipole amplitude":



$$G_{10}(z) \equiv \frac{1}{2N_c} \left\langle \left(\operatorname{tr} \left[V_{\underline{0}} V_{\underline{1}}^{pol \dagger} \right] + \operatorname{tr} \left[V_{\underline{1}}^{pol} V_{\underline{0}}^{\dagger} \right] \right\rangle \rangle (z)$$

unpolarized quark

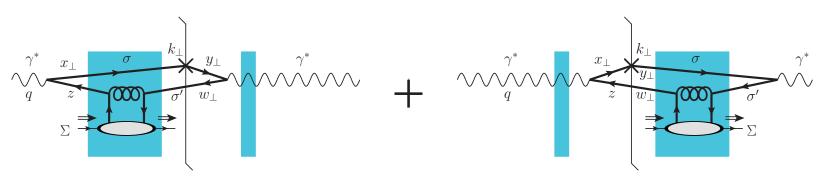
$$V_{\underline{x}} \equiv \mathcal{P} \exp \left[ig \int_{-\infty}^{\infty} dx^{+} A^{-}(x^{+}, 0^{-}, \underline{x}) \right]$$

polarized quark: eikonal propagation, non-eikonal spin-dependent interaction

Double brackets denote an object with energy suppression scaled out:

$$\langle\!\langle \mathcal{O} \rangle\!\rangle(z) \equiv zs \langle \mathcal{O} \rangle(z)$$

Quark Helicity Observables at Small x



• One can show that the g_1 structure function and quark helicity PDF and TMD at small-x can be expressed in terms of the polarized dipole amplitude (flavor singlet case):

$$g_1^S(x,Q^2) = \frac{N_c N_f}{2 \pi^2 \alpha_{EM}} \int_{z_i}^1 \frac{dz}{z^2 (1-z)} \int dx_{01}^2 \left[\frac{1}{2} \sum_{\lambda \sigma \sigma'} |\psi_{\lambda \sigma \sigma'}^T|_{(x_{01}^2,z)}^2 + \sum_{\sigma \sigma'} |\psi_{\sigma \sigma'}^L|_{(x_{01}^2,z)}^2 \right] G(x_{01}^2,z),$$

$$\Delta q^{S}(x,Q^{2}) = \frac{N_{c} N_{f}}{2\pi^{3}} \int_{z_{i}}^{1} \frac{dz}{z} \int_{\frac{1}{zs}}^{\frac{1}{zQ^{2}}} \frac{dx_{01}^{2}}{x_{01}^{2}} G(x_{01}^{2},z),$$

$$g_{1L}^{S}(x,k_T^2) = \frac{8 N_c N_f}{(2\pi)^6} \int_{z_i}^{1} \frac{dz}{z} \int d^2x_{01} d^2x_{0'1} e^{-i\underline{k}\cdot(\underline{x}_{01}-\underline{x}_{0'1})} \frac{\underline{x}_{01}\cdot\underline{x}_{0'1}}{x_{01}^2x_{0'1}^2} G(x_{01}^2,z)$$

• Here s is cms energy squared, $z_i = \Lambda^2/s$, $G(x_{01}^2,z) \equiv \int d^2b \ G_{10}(z)$

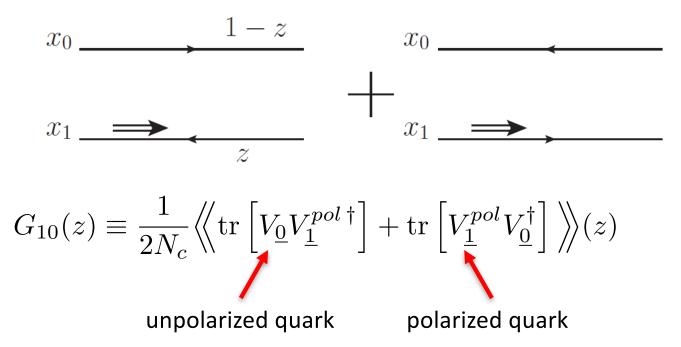
Helicity Evolution at Small x flavor-singlet case

Yu.K., D. Pitonyak, M. Sievert, arXiv:1511.06737 [hep-ph],

arXiv:1610.06197 [hep-ph]

Polarized Dipole

 Our goal now is to construct a small-x evolution equation for the "polarized dipole amplitude".

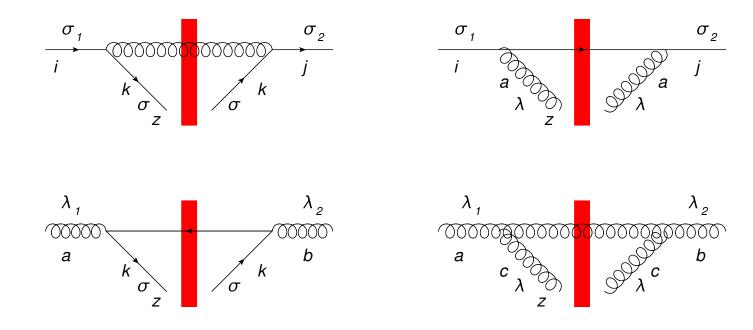


Double brackets denote an object with energy suppression scaled out:

$$\langle\!\langle \mathcal{O} \rangle\!\rangle(z) \equiv zs \langle \mathcal{O} \rangle(z)$$

Helicity Evolution Ingredients

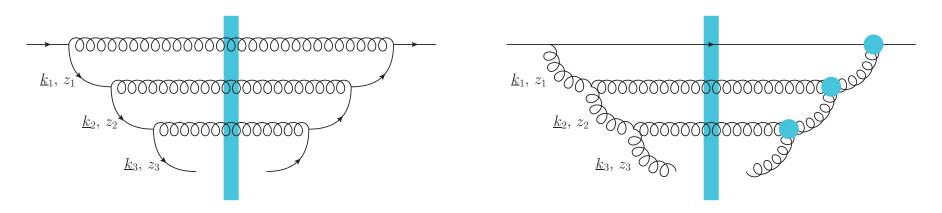
 Unlike the unpolarized evolution (glue only), in one step of helicity evolution we may emit a soft gluon or a soft quark (all in A+=0 LC gauge of the projectile):



 When emitting gluons, one emitted gluon is eikonal, while another one is soft, but non-eikonal, as is needed to transfer polarization down the cascade/ladder.

Helicity Evolution: Ladders

 To get an idea of how the helicity evolution works let us try iterating the splitting kernels by considering ladder diagrams (circles denote noneikonal gluon vertices):

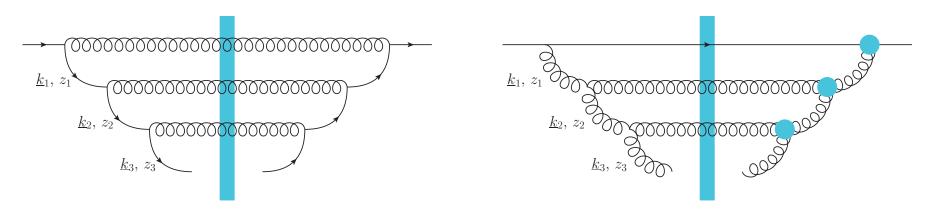


• To get the leading-energy asymptotics we need to order the longitudinal momentum fractions of the quarks and gluons (just like in the unpolarized evolution case) $1\gg z_1\gg z_2\gg z_3\gg\ldots$

obtaining a nested integral

$$\alpha_s^3 \int_{z_i}^1 \frac{dz_1}{z_1} \int_{z_i}^{z_1} \frac{dz_2}{z_2} \int_{z_i}^{z_2} \frac{dz_3}{z_3} z_3 \otimes \frac{1}{z_3 s} \sim \frac{1}{s} \alpha_s^3 \ln^3 s$$

Helicity Evolution: Ladders



- However, these are not all the logs of energy one can get here. Transverse momentum (or distance) integrals have UV and IR divergences, which lead to logs of energy as well.
- If we order transverse momenta / distances as (Sudakov- β ordering)

$$\frac{\underline{k}_1^2}{z_1} \ll \frac{\underline{k}_2^2}{z_2} \ll \frac{\underline{k}_3^2}{z_3} \ll \dots$$
 $z_1 \, \underline{x}_1^2 \gg z_2 \, \underline{x}_2^2 \gg z_3 \, \underline{x}_3^2 \gg \dots$

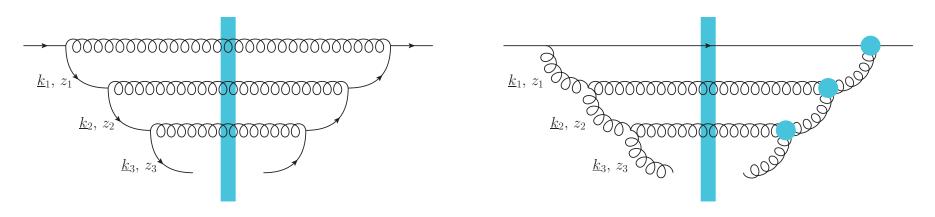
$$z_1 \underline{x}_1^2 \gg z_2 \underline{x}_2^2 \gg z_3 \underline{x}_3^2 \gg \dots$$

we would get integrals like

also generating logs of energy.

$$\int_{1/(z_n s)}^{x_{n-1,\perp}^2 z_{n-1}/z_n} \frac{dx_{n,\perp}^2}{x_{n,\perp}^2}$$

Helicity Evolution: Ladders



To summarize, the above ladder diagrams are parametrically of the order

$$\frac{1}{s}\alpha_s^3 \ln^6 s$$

- Note two features:
 - 1/s suppression due to non-eikonal exchange
 - two logs of energy per each power of the coupling!

Resummation Parameter

For helicity evolution the resummation parameter is different from BFKL,
 BK or JIMWLK, which resum powers of leading logarithms (LLA)

$$\alpha_s \ln(1/x)$$

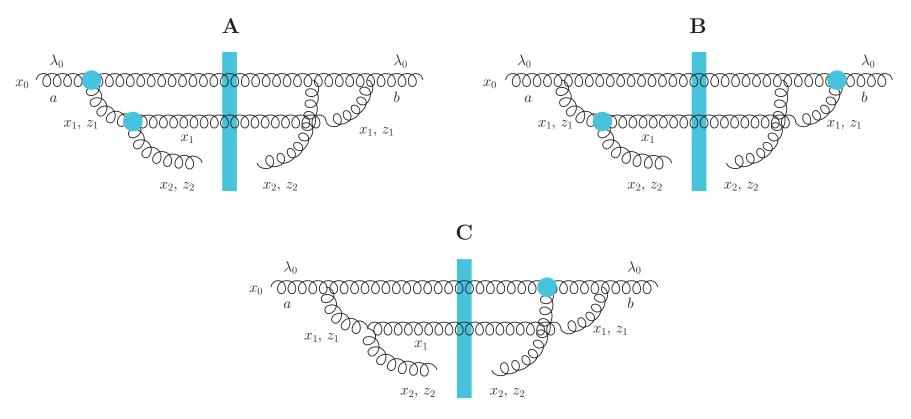
Helicity evolution resummation parameter is double-logarithmic (DLA):

$$\alpha_s \ln^2 \frac{1}{x}$$

- The second logarithm of x arises due to transverse momentum integration being logarithmic both in UV and IR.
- This was known before: Kirschner and Lipatov '83; Kirschner '84; Bartels, Ermolaev, Ryskin '95, '96; Griffiths and Ross '99; Itakura et al '03; Bartels and Lublinsky '03.

Non-Ladder Diagrams

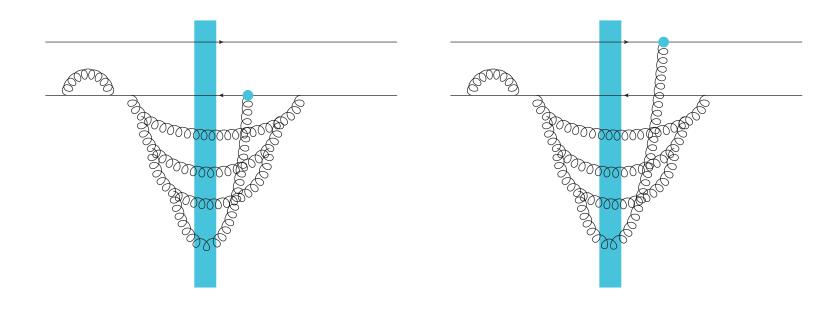
• Ladder diagrams are not the whole story. The non-ladder diagrams below are also leading-order (that is, DLA).



• Non-ladder soft quark emissions cancel for flavor-singlet observables we are primarily interested in. Non-ladder gluons do not cancel.

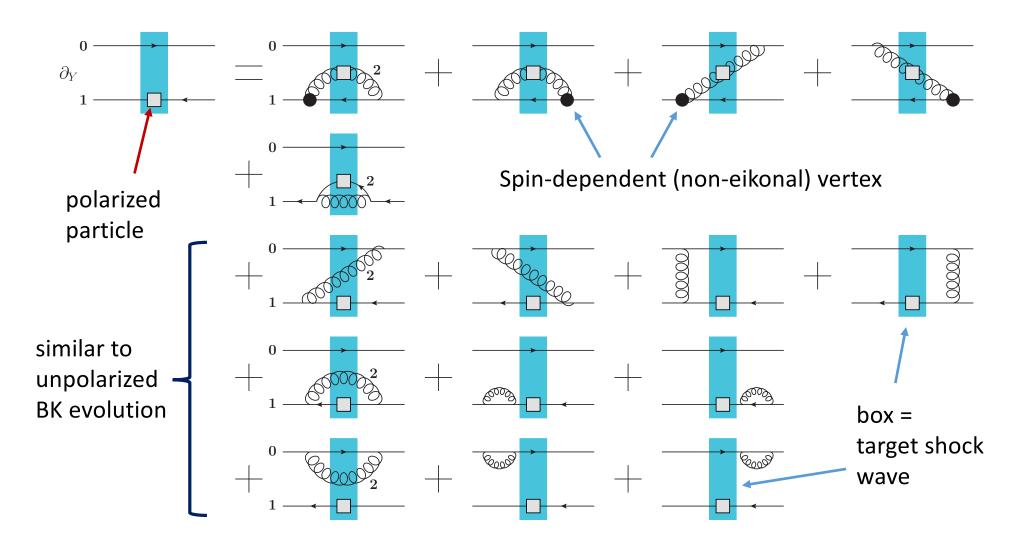
Virtual Corrections

- In addition, virtual corrections from the unpolarized LLA evolution have UV divergences, which cancel between real and virtual diagrams. Here the corrections are not cancelled, but are regulated by the cms energy.
- Helicity evolution thus also contains the following types of graphs:



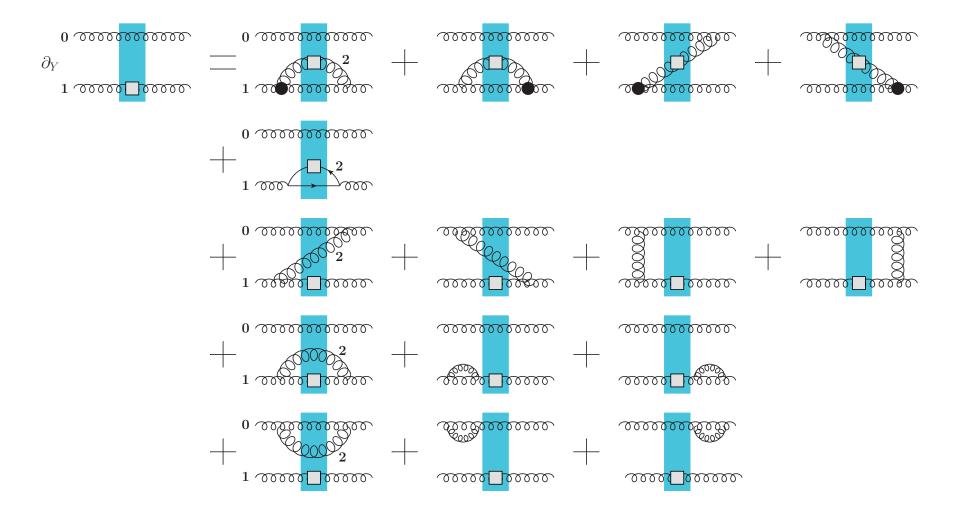
Evolution for Polarized Quark Dipole

One can construct an evolution equation for the polarized dipole:



Evolution for Polarized Quark Dipole

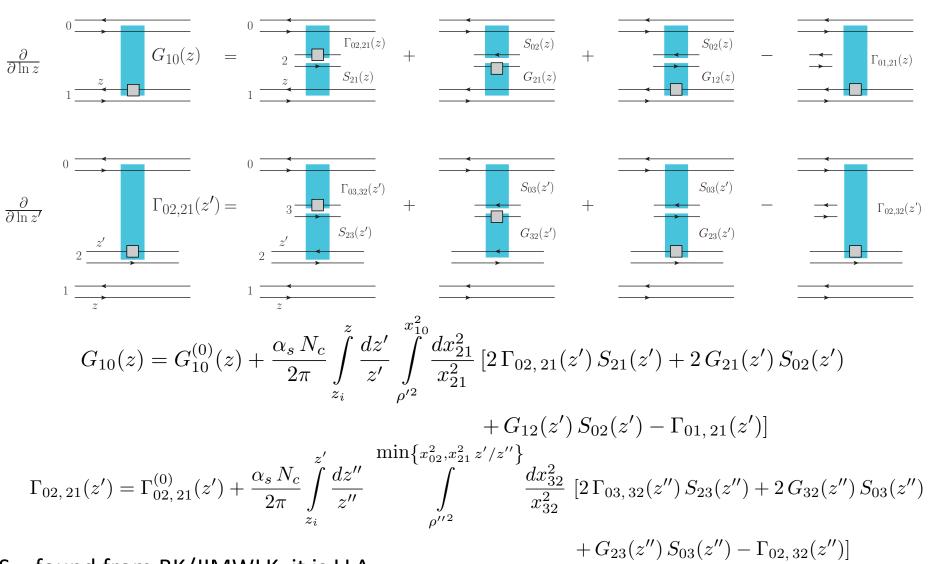
Polarized Gluon Dipole Evolution



Note that at our sub-eikonal level, gluon dipole is a product of two quark dipoles color-wise, but these 'quark' dipoles evolve differently from the polarized dipole made of actual quarks.

Polarized Dipole Evolution in the Large-N_c Limit

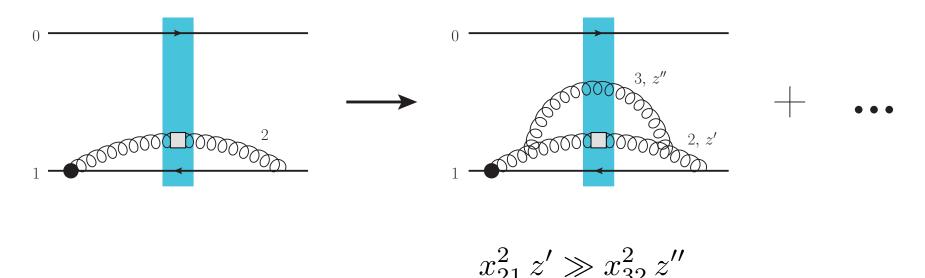
In the large-N_c limit the equations close, leading to a closed system of 2 equations:



S = found from BK/JIMWLK, it is LLA

You friendly "neighborhood" dipole

- There is a new object in the evolution equation the neighbor dipole.
- This is specific for the DLA evolution. Gluon emission may happen in one dipole, but, due to transverse distance ordering, may 'know' about another dipole:



• We denote the evolution in the neighbor dipole 02 by $\,\Gamma_{02,\,21}(z')\,$

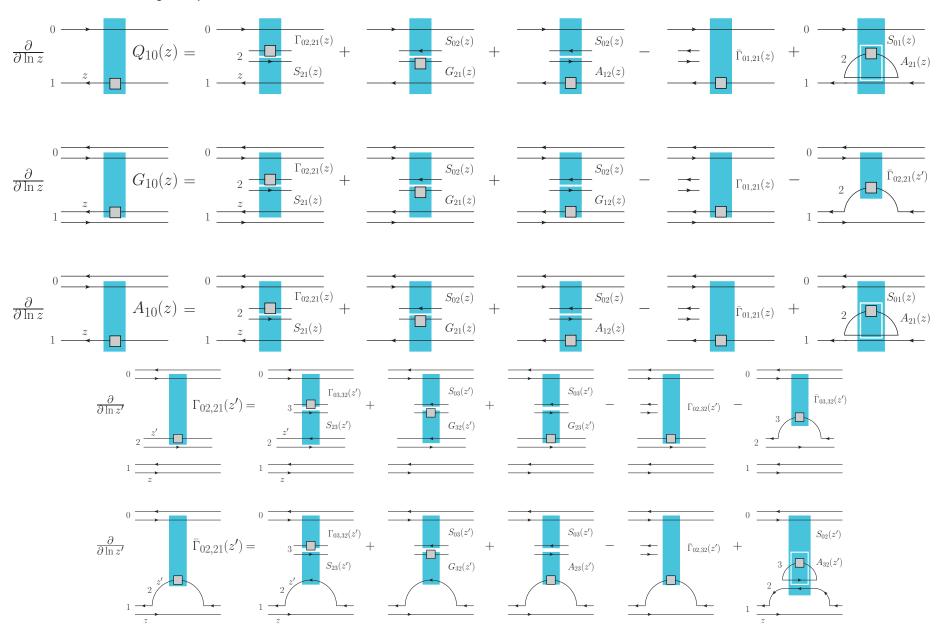
Large-N_c Evolution: Strict DLA Limit

 In the strict DLA limit we neglect the LLA evolution (put S=1) and get:

$$\begin{split} G(x_{10}^2,z) &= G^{(0)}(x_{10}^2,z) + \frac{\alpha_s N_c}{2\pi} \int\limits_{\frac{1}{x_{10}^2 s}}^z \frac{dz'}{z'} \int\limits_{\frac{1}{z's}}^{x_{10}^2} \frac{dx_{21}^2}{x_{21}^2} \left[\Gamma(x_{10}^2,x_{21}^2,z') + 3G(x_{21}^2,z') \right], \\ \Gamma(x_{10}^2,x_{21}^2,z') &= G^{(0)}(x_{10}^2,z') + \frac{\alpha_s N_c}{2\pi} \int\limits_{\frac{1}{z'}}^{z'} \frac{dz''}{z''} \int\limits_{\frac{1}{z'}}^{\min \left[x_{10}^2,x_{21}^2\frac{z'}{z''} \right]} \left[\Gamma(x_{10}^2,x_{32}^2,z'') + 3G(x_{32}^2,z'') \right] \end{split}$$

Polarized Dipole Evolution in the Large-N_c&N_f Limit

In the large-N_c&N_f limit the equations close too, leading to a closed system of 5 equations:



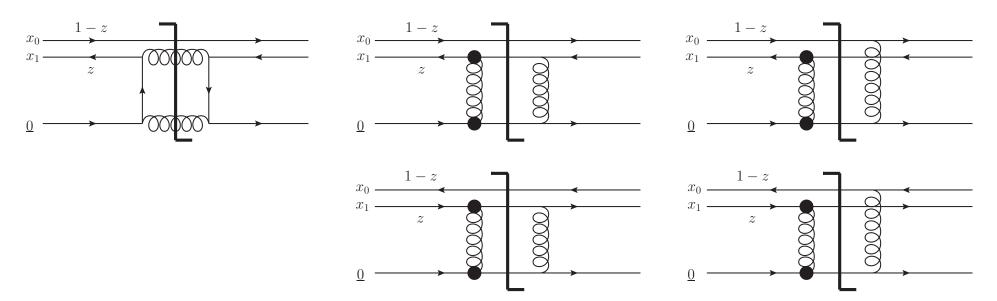
Large-N_c&N_f Evolution

• The evolution equations read (in the strict DLA limit, S=1):

$$\begin{split} Q_{01}(z) &= Q_{01}^{(0)}(z) + \frac{\alpha_s N_c}{2\pi^2} \int_{z_i}^z \frac{dz'}{z'} \int_{\rho'^2} \frac{d^2 x_2}{x_{21}^2} \, \theta(x_{10} - x_{21}) \, \left[G_{12}(z') + \Gamma_{02,21}(z') + A_{21}(z') - \Gamma_{01,21}(z') \right] \\ &\quad + \frac{\alpha_s N_c}{4\pi^2} \int_{z_i}^z \frac{dz'}{z'} \int_{\rho'^2} \frac{d^2 x_2}{x_{21}^2} \, \theta(x_{10}^2 z - x_{21}^2 z') \, A_{21}(z'), \\ G_{10}(z) &= G_{10}^{(0)}(z) + \frac{\alpha_s N_c}{2\pi^2} \int_{z_i}^z \frac{dz'}{z'} \int_{\rho'^2} \frac{d^2 x_2}{x_{21}^2} \, \theta(x_{10} - x_{21}) \, \left[\Gamma_{02,21}(z') + 3 \, G_{12}(z') \right] \\ &\quad - \frac{\alpha_s N_f}{4\pi^2} \int_{z_i}^z \frac{dz'}{z'} \int_{\rho'^2} \frac{d^2 x_2}{x_{21}^2} \, \theta(x_{10}^2 z - x_{21}^2 z') \, \Gamma_{02,21}(z'), \\ A_{01}(z) &= A_{01}^{(0)}(z) + \frac{\alpha_s N_c}{2\pi^2} \int_{z_i}^z \frac{dz'}{z'} \int_{\rho'^2} \frac{d^2 x_2}{x_{21}^2} \, \theta(x_{10} - x_{21}) \, \left[G_{12}(z') + \Gamma_{02,21}(z') + A_{21}(z') - \Gamma_{01,21}(z') \right] \\ &\quad + \frac{\alpha_s N_c}{4\pi^2} \int_{z_i}^z \frac{dz'}{z'} \int_{\rho'^2} \frac{d^2 x_2}{x_{21}^2} \, \theta(x_{10}^2 z - x_{21}^2 z') \, A_{12}(z'). \\ \Gamma_{02,21}(z') &= \Gamma_{02,21}^{(0)}(z') + \frac{\alpha_s N_c}{2\pi} \int_{z_i}^z \frac{dz''}{z''} \int_{\rho''^2}^z \frac{dx_2^2}{x_{21}^2} \, \Gamma_{03,32}(z'') + 3 \, G_{23}(z'') \right] \\ &\quad - \frac{\alpha_s N_f}{4\pi} \int_{z_i}^z \frac{dz''}{z''} \int_{\rho''^2}^z \frac{dx_2^2}{x_{21}^2} \, \Gamma_{03,32}(z'), \\ \bar{\Gamma}_{02,21}(z') &= \bar{\Gamma}_{02,21}^{(0)}(z') + \frac{\alpha_s N_c}{2\pi} \int_{z_i}^z \frac{dz''}{z''} \int_{\rho''^2}^z \frac{dx_2^2}{x_{22}^2} \, \Gamma_{03,32}(z'), \\ &\quad + \frac{\alpha_s N_c}{4\pi} \int_{z_i}^z \frac{dz''}{z''} \int_{\rho''^2}^z \frac{dx_2^2}{x_{21}^2} \, \Gamma_{03,32}(z'). \end{aligned}$$

Initial Conditions

 Initial conditions for all our evolution equations should be given by Bornlevel interactions ("dressed" by multiple rescatterings in the saturation case):



$$G^{(0)}(x_{10}^2, z) = \frac{\alpha_s^2 C_F}{N_c} \pi \left[C_F \ln \frac{zs}{\Lambda^2} - 2 \ln(zs \, x_{10}^2) \right]$$

Helicity Evolution at Small x flavor non-singlet case

Flavor Non-Singlet Observables

• In the flavor non-singlet case, all helicity observables again depend on the polarized dipole amplitude:

$$\begin{split} g_1^{NS}(x,Q^2) &= \frac{N_c}{2\,\pi^2\alpha_{EM}} \int\limits_{z_i}^1 \frac{dz}{z^2(1-z)} \, \int dx_{01}^2 \, \left[\frac{1}{2} \sum_{\lambda\sigma\sigma'} |\psi^T_{\lambda\sigma\sigma'}|^2_{(x_{01}^2,z)} + \sum_{\sigma\sigma'} |\psi^L_{\sigma\sigma'}|^2_{(x_{01}^2,z)} \right] G^{NS}(x_{01}^2,z), \\ \Delta q^{NS}(x,Q^2) &= \frac{N_c}{2\pi^3} \int\limits_{z_i}^1 \frac{dz}{z} \int\limits_{\frac{1}{z_s}}^1 \frac{dx_{01}^2}{x_{01}^2} \, G^{NS}(x_{01}^2,z), \\ g_{1L}^{NS}(x,k_T^2) &= \frac{8\,N_c}{(2\pi)^6} \int\limits_{z_i}^1 \frac{dz}{z} \int d^2x_{01} \, d^2x_{0'1} \, e^{-i\underline{k}\cdot(\underline{x}_{01}-\underline{x}_{0'1})} \, \frac{\underline{x}_{01}\cdot\underline{x}_{0'1}}{x_{01}^2x_{0'1}^2} \, G^{NS}(x_{01}^2,z) \end{split}$$

Polarized dipole amplitude is different (difference instead of sum):

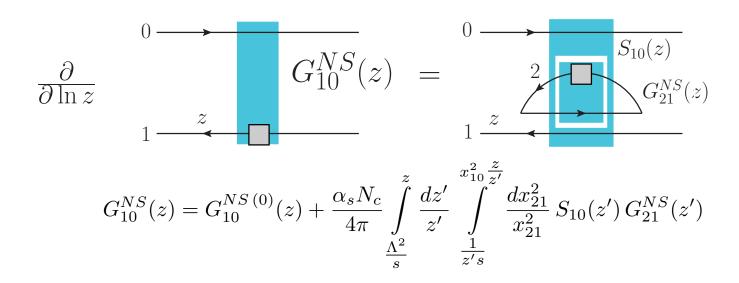
$$G_{10}^{NS}(z) \equiv \frac{1}{2N_c} \left\langle \left(\operatorname{tr} \left[V_{\underline{0}} V_{\underline{1}}^{pol \dagger} \right] - \operatorname{tr} \left[V_{\underline{1}}^{pol} V_{\underline{0}}^{\dagger} \right] \right\rangle \rangle (z)$$

This is related to the definition

$$\Delta q^{NS}(x, Q^2) \equiv \Delta q^f(x, Q^2) - \Delta \bar{q}^f(x, Q^2)$$

Flavor Non-Singlet Evolution

Evolution equations end up being much simpler in the non-singlet case:



• Analytical solution (in the DLA case, S=1) leads to (in agreement with Bartels et al, '95)

$$g_1^{NS}(x,Q^2) \sim \Delta q^{NS}(x,Q^2) \sim g_{1L}^{NS}(x,k_T^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^{NS}} \approx \left(\frac{1}{x}\right)^{\sqrt{\frac{\alpha_s N_c}{\pi}}}$$

The resulting intercept is smaller than the flavor-singlet intercept.

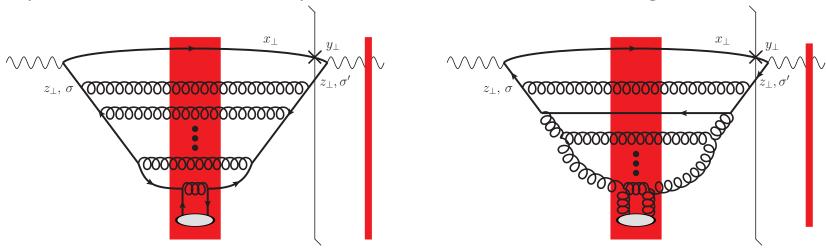
Conclusions

- We have constructed new DLA evolution equations for the polarized dipole operator, which allow us to find the small-x asymptotics of the quark helicity TMDs and PDFs and of the g_1 structure function.
- Like the B-JIMWLK hierarchy, our equations do not close in general. They close in the large-N_C and large-N_C&N_f limits.
- Solution of the flavor singlet evolution equations at large-N_C will be discussed in the talk by Matt Sievert (next). It may potentially generate a solid amount of spin at small-x (see arXiv:1610.06188 [hep-ph]).
- Future work may involve including running coupling and saturation corrections + solving the large-N_C&N_f equations. All are likely to slightly lower the intercept.

Backup Slides

Small-x Quark Helicity TMD Evolution: Ladders

A part of this evolution equation comes from ladder diagrams:



Interestingly the quark and non-eikonal gluon ladders mix (see the right panel), resulting in a more complicated evolution equation:

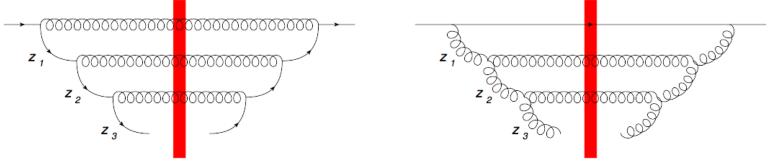
$$W_{\underline{1}\,\underline{0}}^{pol}(z) = W_{\underline{1}\,\underline{0}}^{(0)\,pol}(z) + \frac{\alpha_s}{2\,\pi} \int_{z_i}^{z} \frac{dz'}{z'} \int_{\rho'^2}^{x_{01}^2 z/z'} \frac{dx_{21}^2}{x_{21}^2} M W_{\underline{2}\,\underline{1}}^{pol}(z')$$

$$M \equiv \left(\begin{array}{cc} C_F & 2\,C_F \\ -N_f & 4\,N_c \end{array} \right) \qquad \qquad W_{\underline{x}\underline{y}}^{pol} = \left(\begin{array}{cc} \frac{1}{N_c} \left\langle \left(\operatorname{tr}[V_{\underline{x}}^{pol}] + \operatorname{tr}[V_{\underline{x}}^{pol}\dagger] \right) \right\rangle \\ \frac{1}{N_c^2 - 1} \left\langle \left(\operatorname{Tr}[U_{\underline{x}}^{pol}] + \operatorname{Tr}[U_{\underline{x}}^{pol}\dagger] \right) \right\rangle \end{array} \right) \text{ quarks}$$
 gluons

Ballpark Estimate: Ladders

Summing up mixing quark and gluon ladders yields

$$\Delta\Sigma \sim \left(\frac{1}{x}\right)^{\omega_+} \qquad S_q(Q^2) = \frac{1}{2} \int\limits_0^1 dx \, \Delta\Sigma(x,Q^2)$$
 with
$$\omega_+ = \sqrt{\frac{\alpha_s}{2\pi N_c}} \, \sqrt{9\,N_c^2 - 1 + \sqrt{(1+7\,N_c^2)^2 + 16\,N_c\,N_f\,(1-N_c^2)}}$$

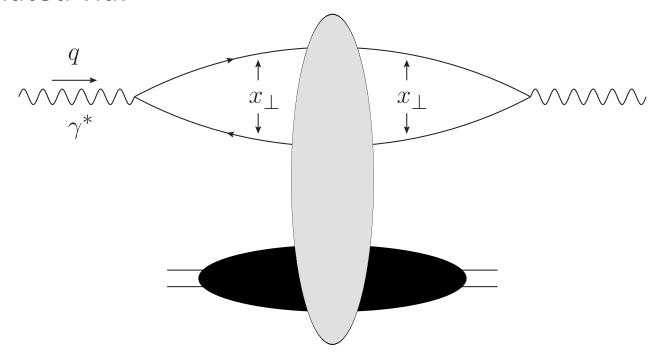


- The numbers are encouraging ($\alpha_{\rm s}$ =0.3, N_c=N_f=3): $\Delta\Sigma \sim \left(\frac{1}{x}\right)^{1.46}$
- But: need to include the non-ladder graphs.

Unpolarized DIS: Small-x Evolution

Dipole picture of DIS

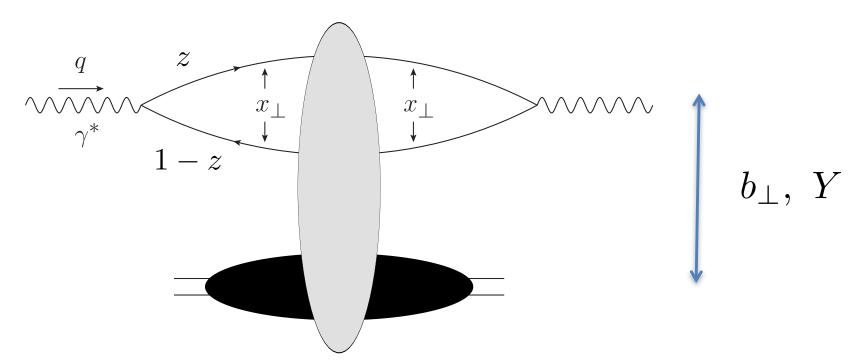
- In the dipole picture of DIS the virtual photon splits into a quark-antiquark pair, which then interacts with the target.
- The total DIS cross section and structure functions are calculated via:



Dipole Amplitude

The total DIS cross section is expressed in terms of the (Impart of the) forward quark dipole amplitude N:

$$\sigma_{tot}^{\gamma^* A} = \int \frac{d^2 x_{\perp}}{2 \, \pi} \, d^2 b_{\perp} \, \int_0^1 \, \frac{dz}{z \, (1-z)} \, |\Psi^{\gamma^* \to q\bar{q}}(\vec{x}_{\perp}, z)|^2 \, N(\vec{x}_{\perp}, \vec{b}_{\perp}, Y)$$



Dipole Amplitude

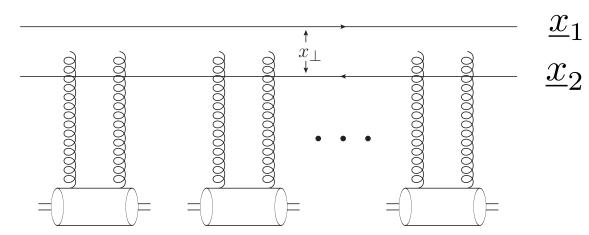
The quark dipole amplitude is defined by

$$N(\underline{x}_1, \underline{x}_2) = 1 - \frac{1}{N_c} \langle \operatorname{tr} \left[V(\underline{x}_1) V^{\dagger}(\underline{x}_2) \right] \rangle$$

Here we use the Wilson lines along the light-cone direction

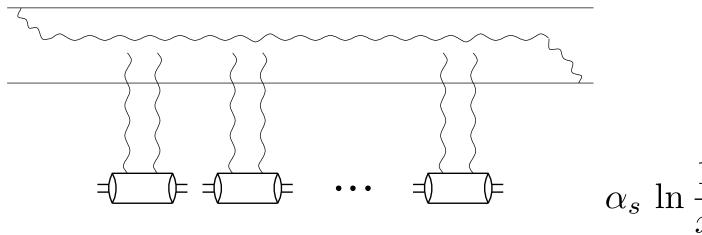
$$V(\underline{x}) = \operatorname{P} \exp \left[i g \int_{-\infty}^{\infty} dx^{+} A^{-}(x^{+}, x^{-} = 0, \underline{x}) \right]$$

 In the classical Glauber-Mueller/McLerran-Venugopalan approach the dipole amplitude resums multiple rescatterings:

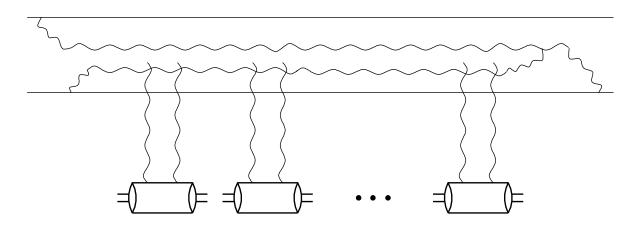


Dipole Amplitude

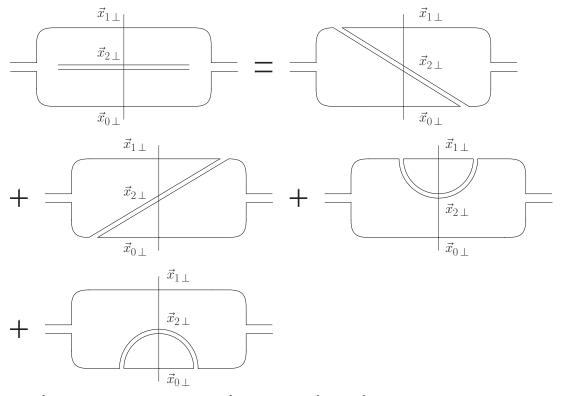
 The energy dependence comes in through nonlinear small-x BK/JIMWLK evolution, which resums the long-lived s-channel gluon corrections:



$$\alpha_s \ln \frac{1}{x} \sim \alpha_s Y \sim 1$$



Notation (Large-N_C)



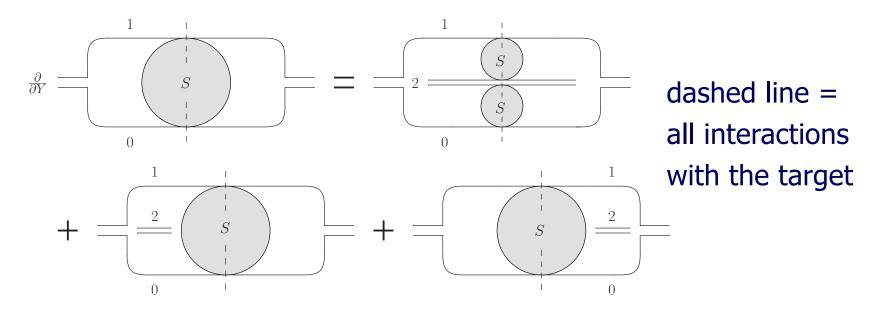
Real emissions in the amplitude squared

(dashed line – all Glauber-Mueller exchanges at light-cone time =0)

Virtual corrections in the amplitude

Nonlinear Evolution

To sum up the gluon cascade at large- N_{C} we write the following equation for the dipole S-matrix:

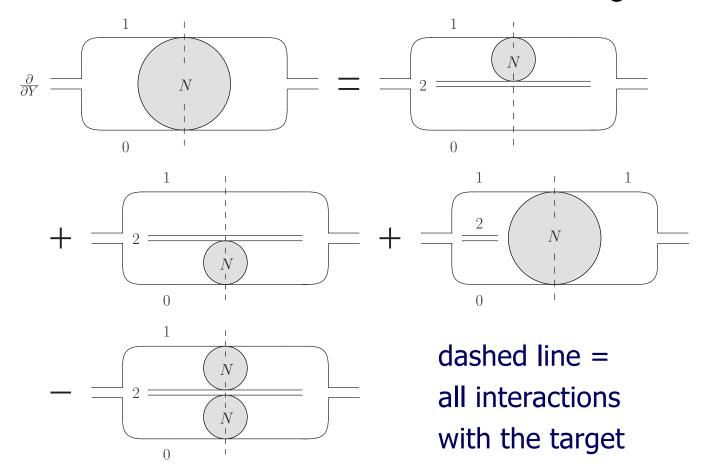


$$\partial_Y S_{\mathbf{x}_0,\mathbf{x}_1}(Y) = \frac{\alpha_s N_c}{2\pi^2} \int d^2x_2 \frac{x_{01}^2}{x_{02}^2 x_{21}^2} \left[S_{\mathbf{x}_0,\mathbf{x}_2}(Y) S_{\mathbf{x}_2,\mathbf{x}_1}(Y) - S_{\mathbf{x}_0,\mathbf{x}_1}(Y) \right]$$

Remembering that S= 1-N we can rewrite this equation in terms of the dipole scattering amplitude N.

Nonlinear evolution at large N_c

As N=1-S we write



$$\partial_Y N_{\mathbf{x}_0,\mathbf{x}_1}(Y) = \frac{\alpha_s N_c}{2\pi^2} \int d^2x_2 \, \frac{x_{01}^2}{x_{02}^2 \, x_{21}^2} \, \left[N_{\mathbf{x}_0,\mathbf{x}_2}(Y) + N_{\mathbf{x}_2,\mathbf{x}_1}(Y) - N_{\mathbf{x}_0,\mathbf{x}_1}(Y) - N_{\mathbf{x}_0,\mathbf{x}_2}(Y) \, N_{\mathbf{x}_2,\mathbf{x}_1}(Y) \right]$$

Balitsky '96, Yu.K. '99

Linear terms = BFKL equation.

What About Spin?

- Spin dependence is energy-suppressed and is thus sub-leading in the small-x asymptotics of total cross sections and unpolarized structure functions. It is often neglected.
- The small-x asymtotics of g_1 structure function was studied in the double-logarithmic approximation (DLA) by Bartels, Ermolaev and Ryskin (BER) in 1995-1996, using the technique developed by Kirschner and Lipatov in 1983.
- DLA resums powers of $~lpha_s~\ln^2rac{1}{x}$
- BER obtained a steep rise of g₁ with decreasing x. Can we see this in our formalism?

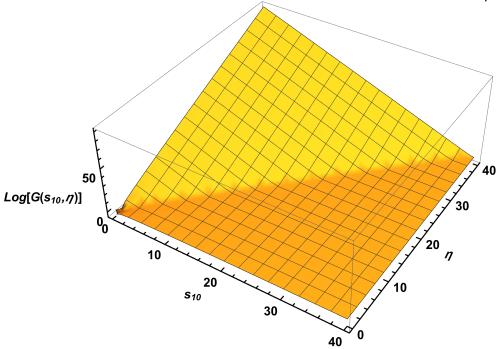
Small x Asymptotics of the Quark Helicity Distribution

Solution of the large-N_C Equations

 We found a numerical solution of the large-N_c DLA evolution equations (linearized, without saturation corrections):

$$G_{01}(z) = G_{01}^{(0)}(z) + \frac{\alpha_s N_c}{2\pi} \int_{z_i}^{z} \frac{dz'}{z'} \int_{\rho'^2}^{x_{10}^2} \frac{dx_{21}^2}{x_{21}^2} \left[\Gamma_{02, 21}(z') + 3 G_{21}(z') \right],$$

$$\Gamma_{02,\,21}(z') = \Gamma_{02,\,21}^{(0)}(z') + \frac{\alpha_s \, N_c}{2\pi} \int_{z_i}^{z'} \frac{\min\{x_{02}^2, x_{21}^2 \, z'/z''\}}{z''} \int_{\rho''^2}^{dx_{32}^2} \left[\Gamma_{03,\,32}(z'') + 3 \, G_{23}(z'')\right]$$



$$\eta = \sqrt{\frac{\alpha_s N_c}{2\pi}} \, \ln \frac{zs}{\Lambda^2}$$

$$s_{10} = \sqrt{\frac{\alpha_s N_c}{2\pi}} \ln \frac{1}{x_{10}^2 \Lambda^2}$$

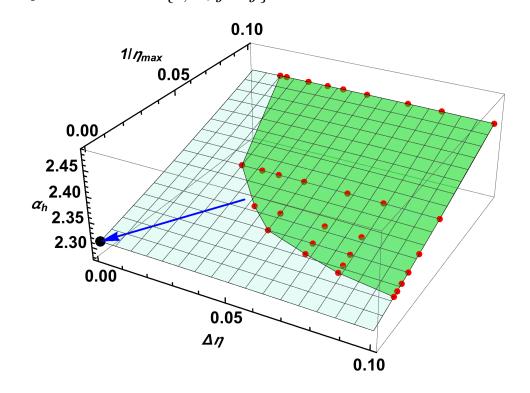
Numerical Solution

We discretized the equations and solved them iteratively:

$$G_{ij} = G_{ij}^{(0)} + \Delta \eta \, \Delta s \sum_{j'=i}^{j-1} \sum_{i'=i}^{j'} \left[\Gamma_{ii'j'} + 3 \, G_{i'j'} \right],$$

$$\Gamma_{ikj} = \Gamma_{ikj}^{(0)} + \Delta \eta \, \Delta s \sum_{j'=i}^{j-1} \sum_{i'=\max\{i,k+j'-j\}}^{j'} \left[\Gamma_{ii'j'} + 3 \, G_{i'j'} \right]$$

 We then extrapolated the intercept to the continuum:



Prior Results

- Small-x DLA evolution for the g_1 structure function was first considered by Bartels, Ermolaev and Ryskin (BER) in '96.
- Including the mixing of quark and gluon ladders, they obtained

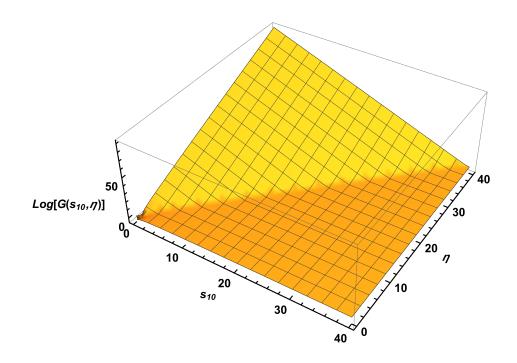
$$\Delta\Sigma \sim g_1 \sim \left(\frac{1}{x}\right)^{z_s \sqrt{\frac{\alpha_s N_c}{2\pi}}}$$

with $z_s = 3.45$ for 4 quark flavors and $z_s = 3.66$ for pure glue.

$$S_q(Q^2) = \frac{1}{2} \int_0^1 dx \, \Delta \Sigma(x, Q^2)$$

• The power is large: it becomes larger than 1 for the realistic strong coupling of the order of $\alpha_s = 0.2 - 0.3$, resulting in polarized PDFs which actually grow with decreasing x fast enough for the integral of the PDFs over the low-x region to be (potentially) large (infinite).

Solution of the large-N_C Equations

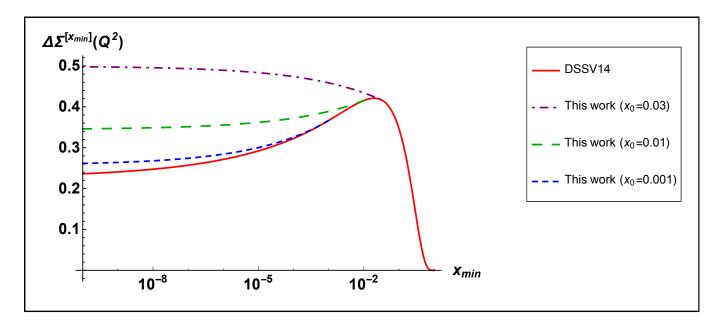


The resulting small-x asymptotics is (about 35% smaller than BER's 3.66 any-N_C pure glue):

$$g_1^S(x,Q^2) \sim \Delta q^S(x,Q^2) \sim g_{1L}^S(x,k_T^2) \sim \left(\frac{1}{x}\right)^{\alpha_h} \approx \left(\frac{1}{x}\right)^{2.31} \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

Impact on proton spin

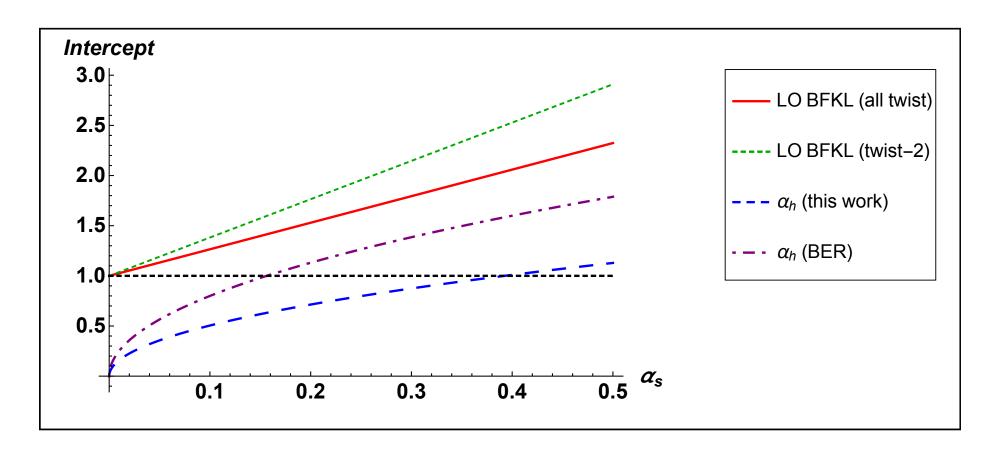
- We have attached a $\Delta \tilde{\Sigma}(x,Q^2) = N\,x^{-\alpha_h}$ curve to the existing hPDF's fits at some ad hoc small value of x labeled ${\bf x_0}$.
- Defining $\Delta\Sigma^{[x_{min}]}(Q^2) \equiv \int_{x_{min}}^1 dx \, \Delta\Sigma(x,Q^2)$ we plot it for x₀=0.03, 0.01, 0.001:



- We observe a moderate to significant enhancement of quark spin.
- More detailed phenomenology is needed in the future.

Intercepts

Here we plot our (flavor-singlet) helicity intercept as a function of the coupling. We show BER result and LO BFKL (all twist and leading twist) for comparison.



Intercepts

• We can summarize some LO intercepts, including the ones we found, in the following table:

			$Q^2 = 3 \text{ GeV}^2$	$Q^2 = 10 \text{ GeV}^2$	$Q^2 = 87 \text{ GeV}^2$
Observable	Evolution	Intercept	$\alpha_s = 0.343$	$\alpha_s = 0.249$	$\alpha_s = 0.18$
Unpolarized flavor singlet structure function F_2	LO BFKL Pomeron	$1 + \frac{\alpha_s N_c}{\pi} 4 \ln 2$	1.908	1.659	1.477
Unpolarized flavor non-singlet structure function F_2	Reggeon	$\sqrt{rac{2lpha_s C_F}{\pi}}$	0.540	0.460	0.391
Flavor singlet	us (Pure Glue)	$2.31\sqrt{\frac{\alpha_s N_c}{2\pi}}$	0.936	0.797	0.678
structure function g_1^S	BER (Pure Glue)	$3.66\sqrt{\frac{\alpha_s N_c}{2\pi}}$	1.481	1.262	1.073
	BER $(N_f = 4)$	$3.45\sqrt{\frac{\alpha_s N_c}{2\pi}}$	1.400	1.190	1.011
Flavor non-singlet	BER and us (large- N_c)	$\sqrt{rac{lpha_s N_c}{\pi}}$	0.572	0.488	0.415
structure function g_1^{NS}					